[1]

M3. (a) (i) Reducing agent

OR

Reduce(s) (WO₃/tungsten oxide)

OR

electron donor

OR

to remove oxygen (from WO₃/tungsten oxide or to form water);

1

(ii) $WO_3 + 3H_2 \rightarrow W + 3H_2O$ Or multiples

1

(iii) One from

H₂ is

- explosive
- flammable or inflammable
- easily ignited
 Ignore reference to pressure or temperature

1

(b) (i) Addition

Ignore "electrophilic" Penalise "nucleophilic addition"

OR

(catalytic) hydrogenation

OR

Reduction

1

(ii) Geometric(al)

OR

cis/trans OR E Z OR E/Z

- 1
- (c) (i) (If any factor is changed which affects an equilibrium), the position of <u>equilibrium</u> will <u>shift/move/change/respond/act</u> so as <u>to oppose the change</u>.

OR

(When a system/reaction in equilibrium is disturbed), the <u>equilibrium shifts/moves</u> in a direction which tends <u>to</u> reduce the disturbance

A variety of wording will be seen here and the key part is the last phrase and must refer to <u>movement of the equilibrium</u>. **QoL**

(ii) **M1 – Statement of number of moles/molecules** There are <u>more moles/molecules</u> (of gas) on the left/of reactants

OR

fewer moles/molecules (of gas) on the right./products

OR

there are <u>4 moles/molecules</u> (of gas) on the left <u>and 2 moles/</u> <u>molecules</u> on the right.

Ignore "volumes" for M1 Mark independently

M2 – Explanation of response/movement in terms of pressure

Increase in pressure is opposed (or words to that effect)

OR

pressure is lowered by a shift in the equilibrium (from left) to right/favours forward reaction.

2

(d) $\Sigma B(reactants) - \Sigma B(products) = \Delta H$ (**M1**)

OR

<u>Sum</u> of bonds broken – <u>Sum</u> of bonds formed = ΔH (**M1**)

 $B(H-H) + \frac{1}{2}B(O=O) - 2B(O-H) = -242$ (M1)

 $B(H-H) = -242 - \frac{1}{2}(+496) + 2(+463)$ (this scores **M1** and **M2**)

 $B(H-H) = (+)436 (kJ mol^{-1}) (M3)$

Award 1 mark for - 436

Candidates may use a cycle and gain full marks.

M1 could stand alone <u>Award full marks for correct answer.</u> Ignore units. Two marks can score with an arithmetic error in the working.

3

M4. (a) (i) $2CuFeS_2 + 2SiO_2 + 4O_2 \rightarrow Cu_2S + 2FeSiO_3 + 3SO_2$

(ii) Acid rain

OR

an effect either from acid rain or from an acidic gas in the atmosphere

1

(iii) SO_2 could be used to make H_2SO_4

OR

to make gypsum/plaster or CaSO₄ (xH₂O)

(b) $Cu_2S + 2O_2 \rightarrow 2CuO + SO_2$ Or multiples Ignore state symbols

(c)
$$\mathbf{2}CuO + C \rightarrow \mathbf{2}Cu + CO_2$$

OR

$$CuO + C \rightarrow Cu + CO$$

Or multiples
Ignore state symbols

- (d) (i) Any one from the following two ONLY Apply the list principle
 - (Scrap) iron is cheap
 - Low energy requirement
 Not "less energy"
 - (ii) Fe + Cu²⁺ \rightarrow Fe²⁺ + Cu Or multiples Ignore state symbols

[7]

1

1

1

1

1

M5. (a) Gain of electrons

			-
(b)	(i)	(+)5 or V or N⁵⁺	1
		(+)4 or IV or N⁴⁺	1
		(+)2 or II or N ²⁺	1
	(ii)	Reduction	1
		$4H^{*} + NO_{3^{-}} + 3e^{(-)} \rightarrow NO + 2H_{2}O$	1
			1
	(iii)	$2H^{*} + NO_{3^{-}} + e^{(-)} \rightarrow NO_{2} + H_{2}O$	
	(iv)	$Cu + 4H^{+} + 2 NO_{3}^{-} \rightarrow Cu^{2+} + 2H_{2}O + 2NO_{2}$	1
		species	1
		balanced	-
		If electrons included, mark CE if these are not balanced	1

[9]

1

M6.	(a)	(i) $\mathbf{2C} + O_2 \rightarrow \mathbf{2CO}$
		OR
		$C + CO_2 \rightarrow 2CO$
		Or multiples.
		Ignore state symbols.

(ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ Or multiples Penalise FE and Fe_2 Ignore state symbols

1

(iii) Economic:

- Scrap iron/steel has higher iron content.
- Recycling involves lower energy consumption
- Blast furnace not required
 Ignore cost
 Assume that "it" means recycling for both reasons

Environmental:

- Reduces greenhouse gas / CO₂ / SO₂ emission.
- Reduces acid rain
- Reduces mining
- Reduces landfill
- Removes an eyesore

1

1

(b) (i) M1 Use of Cl_2 and C

M2 Balanced equation consequential on correct reactants

EITHER

 $\mathsf{TiO}_2 + \mathbf{2CI}_2 + \mathbf{2C} \rightarrow \mathsf{TiCI}_4 + \mathbf{2CO}$

OR

 $TiO_2 + 2Cl_2 + C \rightarrow TiCl_4 + CO_2$ Or multiples Ignore state symbols

2

(ii) M1 Use of Na OR Mg

M2 Balanced equation consequential on correct reactants

EITHER

 $TiCl_4 + 4Na \rightarrow Ti + 4NaCl$

OR

 $TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$

- TiC / carbide is produced
- Product is brittle
- Product is a poor engineering material

(c) (i) One from

To allow

- ions to move
- <u>current</u> to <u>flow</u>
- it to <u>conduct electricity</u>

(ii) $2O^{2-} \rightarrow O_2 + 4e^{-}$

Or multiples including $3O^{2-} \rightarrow 1.5 O_2 + 6e^-$ Ignore state symbols Ignore charge on the electron Credit the electron being subtracted on the LHS

1

1

(iii) Carbon / graphite / the electrodes <u>oxidise</u>
 OR
 Carbon / graphite / the electrodes <u>burn in</u> / <u>react with</u> the <u>oxygen</u> formed
 OR
 carbon dioxide / CO₂ is formed

1

(iv) Recycling involves <u>lower electricity</u> OR <u>less energy</u> consumption
 OR
 The converse for electrolysis

Ignore references to raw materials Assume that "it" means recycling The answer MUST show some evidence of comparison e.g. lower or less

[13]

M7.		(a)	M1 $MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$		
			OR multiples	1	
		M2	An oxidising agent is an <u>electron acceptor</u> OR receives / accepts / gains electrons		
			Ignore state symbols		
			M2 NOT an "electron pair acceptor"		
				1	
	M3 MnO ₂ is the oxidising agent				
			Ignore "takes electrons" or "takes away electrons"	1	
				L	
	(b)	M1	Formation of SO ₂ and Br ₂ (could be in an equation)		
	()			1	
		M2	Balanced equation		
			Several possible equations		
			$2KBr + 3H_2SO_4 \rightarrow 2KHSO_4 + Br_2 + SO_2 + 2H_2O$ OR		
			$2KBr + 2H_2SO_4 \rightarrow K_2SO_4 + Br_2 + SO_2 + 2H_2O$	1	
				1	
		М3	$2\mathbf{K}\mathbf{B}\mathbf{r} + \mathbf{C}\mathbf{I}_2 \rightarrow 2\mathbf{K}\mathbf{C}\mathbf{I} + \mathbf{B}\mathbf{r}_2$		
			M2 Could be ionic equation with or without K^* 2 Br ⁻ + 6 H ⁺ + 3 SO ₄ ²⁻ \rightarrow Br ₂ + 2 HSO ₄ ⁻ + SO ₂ + 2 H ₂ O		
			$(3H_2SO_4)$		
			$2Br^{-} + 4H^{+} + SO_{4}^{2-} \rightarrow Br_{2} + SO_{2} + 2H_{2}O$		
			(2 HBr + H₂SO₄) Accept HBr and H₂SO₄ in these equations as shown or mixed		
			variants that balance.		
			Ignore equations for KBr reacting to produce HBr		
			M3 Could be ionic equation with or without K^* 2 Br ⁻ + Cl ₂ \rightarrow 2 Cl ⁻ + Br ₂		
				1	

M4 % atom economy of bromine

$$= \frac{Br_2}{2KBr + Cl_2} \times 100 = \frac{(2 \times 79.9)}{238 + 71} \times 100 = \frac{159.8}{309} \times 100$$

= **51.7%** OR **52%**

M4 Ignore greater number of significant figures

M5 One from:

- High atom economy
- Less waste products
- Cl₂ is available on a large-scale
- No SO₂ produced
- Does not use concentrated H₂SO₄
- (Aqueous) KBr or bromide (ion) in seawater.
- Process 3 is simple(st) or easiest to carry out M5 Ignore reference to cost Ignore reference to yield

(c) M1 HBr -1

- M2 HBrO (+)1
- M3 Equilibrium will shift <u>to the right</u> *OR* <u>L to R</u> *OR* Favours forward reaction *OR* Produces more HBrO
- M4 Consequential on correct M3 OR to oppose the loss of HBrO OR replaces (or implied) the HBrO (that has been used up)

[12]

1

1

1

1

1